![[personal profile]](https://www.dreamwidth.org/img/silk/identity/user.png)
Начало тут , продолжение там.
Итак, немного (пару недель) поработав "техником по холодильному, компрессорному и вентиляционному оборудованию", а коротко - "холодильщиком", пережив десяток "моргушек" и изучив сменные журналы - я решил, что пора переходить к делу.
И начать с участка, куда дальше (и, соответственно, дольше) всего бегать. С водокачки.
Конечно, объяснение "мне надоело бегать на водокачку" начальство не поймет.
А вот объяснение "из-за проблем с электрикой и программой фабрика уже не раз оставалась без воды" с приложением выписок из сменного журнала - еще как поймет, если адекватное.
Я полулегально выпросил у айтишников старый списанный программатор (с дохлой батарейкой и аццким разрешением экрана 800х600), сходил к электроникам и списал проекты (холодильщики доступа на сервер с проектами не имеют, ибо ростом не вышли в проекты смотреть), там же взял попользовать нужные шнурки - и отправился наводить порядок.
Водокачка фабричная - это три сарайки в поле у леса, на самом краю территории, метрах в 500 от электромастерской. В каждой сарайке - артезианская скважина, в каждой скважине - погружной насос, у каждого насоса - частотный привод.
Одна из сараек размером чуть больше, в ней живет электрошкаф питания и управления всем этим нехитрым хозяйством, а также фильтр ГМО (грубой механической очистки, а не то, что вы подумали).
От водокачки идет труба к полуподземному пожарному водоему и станции водочистки, это уже совсем рядом с главным корпусом.
Что в этой простейшей системе может пойти не так?
Оооо... больше, чем вы можете себе представить.
Первое, что я обнаружил (точнее, до меня давно обнаружили) - удивительный факт: насосы вообще никогда не останавливаются. Хоть есть разбор воды, хоть нету. И соответственно, бестолку вырабатывают моторесурс и кушают электричество.
Что за чудеса? Никто не знает, известно лишь, что раньшедеревья были зеленее такого не было.
Выяснение причины начнем с понимания: а как вообще водокачка узнает, качать или не качать?
Диспетчеризации никакой нет. Точнее есть, но... несколько специфическая (см. ниже).
Очень просто.
Потребителей два - пожарный водоем (в нормальной беспожарной жизни заполненный "под завязку") и относительно небольшой буферный бак запаса воды перед водочисткой.
И там, и там имеется простой механический клапан. В точности, как в сливном бачке унитаза - рычажок с поплавком и подвижной пробкой (ну, чуть посложнее и с гистерезисом). Есть вода - поплавок всплывает, клапан запирается. Нет воды - поплавок опускается, клапан открывается.
Контроллер водокачки смотрит за давлением на подаче. Если при выключенных насосах давление упало - клапан открылся - нужно качать. Когда клапан закрывается - давление подскакивает - насосы выключаются.
Теперь добавим к этому ПИД-регулятор давления, управляющий оборотами насосов в соответствии с уставкой давления.
Как это может работать вместе? В случае идеального регулятора - никак. Если давление строго постоянно - определение расхода по давлению не работает. Но поскольку у насосов есть инерция, а идеальных регуляторов не бывает - то при удачно "пойманной" настройке все работает.
Точнее, работало. До поры...
Что случилось потом? Тут пришлось крепко подумать. И вот в чем дело.
Со временем седло клапана чуть износилось, трение в механике чуть выросло, пружинка ослабла, или еще чего... и клапан по-прежнему закрывался, но чуть медленнее. Соответственно, при закрытии - давление нарастало чуть медленнее.
Этого "чуть" хватало, чтобы регулятор успевал отработать скачок давления и убавить обороты насосов.
Вспоминаем свойства центробежных насосов.
Кому интересно - вот тут хорошее описание, "что происходит". Там же есть и формулы, графики и прочая.
При уменьшении оборотов напор падает. Как только обороты снижаются так, что напор равен уставке давления на подаче плюс гравитационное давление за счет высоты подъема, при нулевом расходе - насос крутится "сам на себя". Проще говоря, баламутит воду в скважине. Не забывая потреблять электричество и вырабатывать моторесурс.
Для проверки я попросил напарника перемещать поплавок в емкости и понаблюдал за поведением регулятора.
Да, все так и есть.
Откуда такой ляп? А посмотрите любой справочный материал про центробежные насосы. Включая вышеупомянутый. Везде утверждается, что КПД насоса при изменении частоты вращения рабочего колеса изменяется мало. Ну, вот наладчики и не заморачивались.
Это, вообще говоря, правильно. Но! но только в определенном диапазоне частот. При выходе за его границы КПД фатально падает, вплоть до нуля. Но об этом-то если и упоминается, то мельком!
Это раз.
А два:
99% нынешних наладчиков свято верят в чудодейственные свойства ПИД-регулятора. Достаточно его применить и прогнать автонастройку - и все, наладка окончена.
В данном случае - руки чешутся сбить настройку регулятора. Чтобы регулировал похуже-помедленнее и таким образом, компенсировал не-идеальное поведение запорного клапана. Однако это в корне неправильно.
Нужно начиная с малых лет вдалбливать: первым делом - изучаем физику, затем математику объекта. Понимаем, что в нем происходит. Изучаем граничные параметры. На основе этого делаем алгоритм. И ПИД-регулятор - это будет только маленький кусочек алгоритма.
В нашем случае - пуск насосов по падению давления оставляем. Регулятор настраиваем на номинальном расходе с небольшим перерегулированием.
А вот останов делаем... нет, не по давлению. А по падению оборотов насосов ниже некой уставки. Уставку сперва прикидываем в WinCaps (это программулина насчет насосов от Grundfos), а затем подстраиваем экспериментально, попросив напарника подергать по-разному поплавок клапана (получилось 21 Гц).
ОК, двигаемся дальше. Переходим к анализу поведения системы в аварийных ситуациях и самой типичной из них - "моргушке".
Тут нужно сказать о диспетчеризации.
Чтобы из-за отсутствия диспетчеризации можно было как-то определить наличие аварии - над дверью сарайки повесили фонарь. Самый обычный уличный фонарь, только стекло покрасили красной краской. Лампочка включается с контроллера. Этот фонарь видно через поле из окон электромастерской. (ага, других дел у нас нет, кроме как на водокачку через поле пялиться. И вообще мы из электромастерской не выходим никогда). Кроме того, его же видно с будки охраны на проходной, вот обычно охрана и звонит, как заметит. Мол, "у вас там на водокачке лампочка горит".
По проекту вообще-то как бы предусмотрена там оптика.
Но... кто сказал, что фонарь с лампочкой - это не оптика?
Осталось еще продублировать сигнализацию почтовым голубем. Так, чтобы при аварии дверца клетки открывалась, и он вылетал. А голубя - специально обучить разыскивать на фабрике дежурного водяного, а при отсутствии его - электрика.
Вот только лаборатория такую инновацию явно не одобрит: появление птицы в "чистой зоне" у них приведет к массовому инфаркту и инсульту одновременно.
С этой инновационной нанотехнологичной чудо-системой диспетчеризации случилась пара казусов.
Лампочка - самая обычная лампочка накаливания, на 220В. Поскольку так вышло, что горела она достаточно часто и долго (почему - см. в следующей части) - однажды лампочка перегорела.
И аварийную остановку всех насосов - никто не заметил.
Стоит ли упоминать,что произошло сие событие в субботу, когда водяных на фабрике нет?
А диспетчеризации на водочистке тогда тоже не было... (и вообще на половине утилит не было).
Обнаружил это... правильно, котельщик. У которого внезапно! закончилась вода для подпитки котлов.
В результате из-за перегоревшей лампочки фабрика осталась не только без холодной воды, но и без горячей воды и без пара.
В другой раз - выбило вводной автомат.
Почему его выбило - разговор отдельный. Водокачка стоит на отшибе, и отопление с котельной туда не потащили. Вместо этого - тепловентиляторы, которые зимой подогревают помещение до +5. Дабы не замерзло.
Вот в нем ТЭН сгорел и коротнул.
Почему при этом автомат защиты ТЭНа не выбило, зато выбило вводной автомат - это вопрос к проектантам, которые поставили туда автоматы на ОДИНАКОВЫЙ номинальный ток. (ну вот как так можно, а?). А закон Мерфи никто не отменял: из двух неприятностей случится та, ущерб от которой больше.
Ой, соврал я. Не самая большая из возможных неприятностей.
Потому что автомат на тепловентилятор, очевидно, был переразмерен, и не соответствал сечению кабеля.
Кабель мог бы перегреться и загореться.
Пожар на водокачке - это звучит гордо, да..
На этот раз фабрика осталась не только без воды и пара, но еще и без отопления (зима, однако).
(К моменту моего трудоустройства баг с номиналами автоматов уже пофиксили.)
О том, почему аварийная лампочка так много горела, что аж перегорела, и где между фабрикой и водокачкой потерялась диспетчеризация - в следующей части.
Итак, немного (пару недель) поработав "техником по холодильному, компрессорному и вентиляционному оборудованию", а коротко - "холодильщиком", пережив десяток "моргушек" и изучив сменные журналы - я решил, что пора переходить к делу.
И начать с участка, куда дальше (и, соответственно, дольше) всего бегать. С водокачки.
Конечно, объяснение "мне надоело бегать на водокачку" начальство не поймет.
А вот объяснение "из-за проблем с электрикой и программой фабрика уже не раз оставалась без воды" с приложением выписок из сменного журнала - еще как поймет, если адекватное.
Я полулегально выпросил у айтишников старый списанный программатор (с дохлой батарейкой и аццким разрешением экрана 800х600), сходил к электроникам и списал проекты (холодильщики доступа на сервер с проектами не имеют, ибо ростом не вышли в проекты смотреть), там же взял попользовать нужные шнурки - и отправился наводить порядок.
Водокачка фабричная - это три сарайки в поле у леса, на самом краю территории, метрах в 500 от электромастерской. В каждой сарайке - артезианская скважина, в каждой скважине - погружной насос, у каждого насоса - частотный привод.
Одна из сараек размером чуть больше, в ней живет электрошкаф питания и управления всем этим нехитрым хозяйством, а также фильтр ГМО (грубой механической очистки, а не то, что вы подумали).
От водокачки идет труба к полуподземному пожарному водоему и станции водочистки, это уже совсем рядом с главным корпусом.
Что в этой простейшей системе может пойти не так?
Оооо... больше, чем вы можете себе представить.
Первое, что я обнаружил (точнее, до меня давно обнаружили) - удивительный факт: насосы вообще никогда не останавливаются. Хоть есть разбор воды, хоть нету. И соответственно, бестолку вырабатывают моторесурс и кушают электричество.
Что за чудеса? Никто не знает, известно лишь, что раньше
Выяснение причины начнем с понимания: а как вообще водокачка узнает, качать или не качать?
Диспетчеризации никакой нет. Точнее есть, но... несколько специфическая (см. ниже).
Очень просто.
Потребителей два - пожарный водоем (в нормальной беспожарной жизни заполненный "под завязку") и относительно небольшой буферный бак запаса воды перед водочисткой.
И там, и там имеется простой механический клапан. В точности, как в сливном бачке унитаза - рычажок с поплавком и подвижной пробкой (ну, чуть посложнее и с гистерезисом). Есть вода - поплавок всплывает, клапан запирается. Нет воды - поплавок опускается, клапан открывается.
Контроллер водокачки смотрит за давлением на подаче. Если при выключенных насосах давление упало - клапан открылся - нужно качать. Когда клапан закрывается - давление подскакивает - насосы выключаются.
Теперь добавим к этому ПИД-регулятор давления, управляющий оборотами насосов в соответствии с уставкой давления.
Как это может работать вместе? В случае идеального регулятора - никак. Если давление строго постоянно - определение расхода по давлению не работает. Но поскольку у насосов есть инерция, а идеальных регуляторов не бывает - то при удачно "пойманной" настройке все работает.
Точнее, работало. До поры...
Что случилось потом? Тут пришлось крепко подумать. И вот в чем дело.
Со временем седло клапана чуть износилось, трение в механике чуть выросло, пружинка ослабла, или еще чего... и клапан по-прежнему закрывался, но чуть медленнее. Соответственно, при закрытии - давление нарастало чуть медленнее.
Этого "чуть" хватало, чтобы регулятор успевал отработать скачок давления и убавить обороты насосов.
Вспоминаем свойства центробежных насосов.
Кому интересно - вот тут хорошее описание, "что происходит". Там же есть и формулы, графики и прочая.
При уменьшении оборотов напор падает. Как только обороты снижаются так, что напор равен уставке давления на подаче плюс гравитационное давление за счет высоты подъема, при нулевом расходе - насос крутится "сам на себя". Проще говоря, баламутит воду в скважине. Не забывая потреблять электричество и вырабатывать моторесурс.
Для проверки я попросил напарника перемещать поплавок в емкости и понаблюдал за поведением регулятора.
Да, все так и есть.
Откуда такой ляп? А посмотрите любой справочный материал про центробежные насосы. Включая вышеупомянутый. Везде утверждается, что КПД насоса при изменении частоты вращения рабочего колеса изменяется мало. Ну, вот наладчики и не заморачивались.
Это, вообще говоря, правильно. Но! но только в определенном диапазоне частот. При выходе за его границы КПД фатально падает, вплоть до нуля. Но об этом-то если и упоминается, то мельком!
Это раз.
А два:
99% нынешних наладчиков свято верят в чудодейственные свойства ПИД-регулятора. Достаточно его применить и прогнать автонастройку - и все, наладка окончена.
В данном случае - руки чешутся сбить настройку регулятора. Чтобы регулировал похуже-помедленнее и таким образом, компенсировал не-идеальное поведение запорного клапана. Однако это в корне неправильно.
Нужно начиная с малых лет вдалбливать: первым делом - изучаем физику, затем математику объекта. Понимаем, что в нем происходит. Изучаем граничные параметры. На основе этого делаем алгоритм. И ПИД-регулятор - это будет только маленький кусочек алгоритма.
В нашем случае - пуск насосов по падению давления оставляем. Регулятор настраиваем на номинальном расходе с небольшим перерегулированием.
А вот останов делаем... нет, не по давлению. А по падению оборотов насосов ниже некой уставки. Уставку сперва прикидываем в WinCaps (это программулина насчет насосов от Grundfos), а затем подстраиваем экспериментально, попросив напарника подергать по-разному поплавок клапана (получилось 21 Гц).
ОК, двигаемся дальше. Переходим к анализу поведения системы в аварийных ситуациях и самой типичной из них - "моргушке".
Тут нужно сказать о диспетчеризации.
Чтобы из-за отсутствия диспетчеризации можно было как-то определить наличие аварии - над дверью сарайки повесили фонарь. Самый обычный уличный фонарь, только стекло покрасили красной краской. Лампочка включается с контроллера. Этот фонарь видно через поле из окон электромастерской. (ага, других дел у нас нет, кроме как на водокачку через поле пялиться. И вообще мы из электромастерской не выходим никогда). Кроме того, его же видно с будки охраны на проходной, вот обычно охрана и звонит, как заметит. Мол, "у вас там на водокачке лампочка горит".
По проекту вообще-то как бы предусмотрена там оптика.
Но... кто сказал, что фонарь с лампочкой - это не оптика?
Осталось еще продублировать сигнализацию почтовым голубем. Так, чтобы при аварии дверца клетки открывалась, и он вылетал. А голубя - специально обучить разыскивать на фабрике дежурного водяного, а при отсутствии его - электрика.
Вот только лаборатория такую инновацию явно не одобрит: появление птицы в "чистой зоне" у них приведет к массовому инфаркту и инсульту одновременно.
С этой инновационной нанотехнологичной чудо-системой диспетчеризации случилась пара казусов.
Лампочка - самая обычная лампочка накаливания, на 220В. Поскольку так вышло, что горела она достаточно часто и долго (почему - см. в следующей части) - однажды лампочка перегорела.
И аварийную остановку всех насосов - никто не заметил.
Стоит ли упоминать,что произошло сие событие в субботу, когда водяных на фабрике нет?
А диспетчеризации на водочистке тогда тоже не было... (и вообще на половине утилит не было).
Обнаружил это... правильно, котельщик. У которого внезапно! закончилась вода для подпитки котлов.
В результате из-за перегоревшей лампочки фабрика осталась не только без холодной воды, но и без горячей воды и без пара.
В другой раз - выбило вводной автомат.
Почему его выбило - разговор отдельный. Водокачка стоит на отшибе, и отопление с котельной туда не потащили. Вместо этого - тепловентиляторы, которые зимой подогревают помещение до +5. Дабы не замерзло.
Вот в нем ТЭН сгорел и коротнул.
Почему при этом автомат защиты ТЭНа не выбило, зато выбило вводной автомат - это вопрос к проектантам, которые поставили туда автоматы на ОДИНАКОВЫЙ номинальный ток. (ну вот как так можно, а?). А закон Мерфи никто не отменял: из двух неприятностей случится та, ущерб от которой больше.
Ой, соврал я. Не самая большая из возможных неприятностей.
Потому что автомат на тепловентилятор, очевидно, был переразмерен, и не соответствал сечению кабеля.
Кабель мог бы перегреться и загореться.
Пожар на водокачке - это звучит гордо, да..
На этот раз фабрика осталась не только без воды и пара, но еще и без отопления (зима, однако).
(К моменту моего трудоустройства баг с номиналами автоматов уже пофиксили.)
О том, почему аварийная лампочка так много горела, что аж перегорела, и где между фабрикой и водокачкой потерялась диспетчеризация - в следующей части.
Tags:
no subject
no subject
no subject
no subject
no subject
ВСЕ кривые срабатывания автоматов нормируются коэффициентом к номинальному току.
См. например (стр.4)
no subject
приходится ставить вот такое
http://www.abb.com/product/seitp329/9dc15d0249c4e6a8c1257c130039cef5.aspx
no subject
C40 должен отработать где-то от 200 до 400 А, C16 - от 160 до 320. Запросто C40 может сработать при меньшем токе, чем C16, право имеет.
no subject
no subject
ток кз по идее много выше кривого участка, поэтому скоординировать два автомата не получится, если только в том что выше по цепи нет специальной задержки (definite time delay). Так что может выбить оба.
no subject
Автоматы с задержкой по времени это для всяких установок с тяжелым пуском мотора, конденсаторами и прочей фигни иногда дающей могучие но кратковременные выбросы. Там либо надо ставить совсем уж огромную уставку и тем самым ухудшать безопасность, либо рисковать что оно отшибет при самом обычном пуске.
no subject
есть еще такая штука как zone selective interlocking - два (или больше) выключателя соединяются в сеть (proprietary protocol обычно), тот что ниже, видя кз, сообщает тому, что выше, чтобы тот не отключался, типа я сам.
no subject
no subject
можно погуглить Eaton Molded-Case Circuit Breakers & Enclosures
И подождать некоторые выключатели все-таки могут, полагаю большого номинала
no subject
на особо больших токах (килоамперы) там вообще особая статья, причем как выключатели с задержкой так и наоборот быстродействующие. Но я там мало что знаю.
no subject
no subject
Внутреннее сопротивление источника тока, сопротивление проводников и эквивалентное сопротивление дуги ток - ограничивают.
Кстати, 200 I ном для автомата на 50А - это 10 кА, уже предел (или за пределом) физического испарения проводящих элементов в автомате :)